198,294 research outputs found

    Dinitrogen Complexes of Sulfur-Ligated Iron

    Get PDF
    We report a unique class of dinitrogen complexes of iron featuring sulfur donors in the ancillary ligand. The ligands utilized are related to the recently studied tris(phosphino)silyl ligands (2-R_2PC_6H_4)_3Si (R = Ph, iPr) but have one or two phosphine arms replaced with thioether donors. Depending on the number of phosphine arms replaced, both mononuclear and dinuclear iron complexes with dinitrogen are accessible. These complexes contribute to a desirable class of model complexes that possess both dinitrogen and sulfur ligands in the immediate iron coordination sphere

    Reactivity of (1-methoxycarbonylpentadienyl)iron(1+) cations with hydride, methyl, and nitrogen nucleophiles

    Get PDF
    The reaction of tricarbonyl and (dicarbonyl)triphenylphosphine (1-methoxycarbonyl-pentadientyl)iron(1+) cations 7 and 8 with methyl lithium, NaBH3CN, or potassium phthalimide affords (pentenediyl)iron complexes 9a-c and 11a-b, while reaction with dimethylcuprate, gave (E,Z-diene)iron complexes 10 and 12. Oxidatively induced-reductive elimination of 9a-c gave vinylcyclopropanecarboxylates 17a-c. The optically active vinylcyclopropane (+)-17a, prepared from (1S)-7, undergoes olefin cross-metathesis with excess (+)-18 to yield (+)-19, a C9C16 synthon for the antifungal agent ambruticin. Alternatively reaction of 7 with methanesulfonamide or trimethylsilylazide gave (E,E-diene)iron complexes 14d and e. Huisgen [3 + 2] cyclization of the (azidodienyl)iron complex 14e with alkynes afforded triazoles 25a-e

    Lanthanide(III) complexes are more active inhibitors of the Fenton reaction than pure ligands

    Get PDF
    OBJECTIVES: This study is an extension to our finding of direct anti-oxidant activities of lanthanide(III) complexes with the heterocyclic compound, 5-aminoorotic acid (AOA). In this experiment, we used AOA and coumarin-3-carboxylic acid as the two heterocyclic compounds with anti-oxidant potential, to produce the complexes with different lanthanides. METHODS: Lanthanide(III) complexes were tested on the iron-driven Fenton reaction. The product of this reaction, the hydroxyl radical, was detected by HPLC. RESULTS: All complexes as well as their ligands had positive or neutral effect on the Fenton reaction but their behavior was different. Both pure ligands in low concentration ratio to iron were inefficient in contrast to some of their complexes. Complexes of neodymium, samarium, gadolinium, and partly of cerium blocked the Fenton reaction at very low ratios (in relation to iron) but the effect disappeared at higher ratios. In contrast, lanthanum complexes appeared to be the most promising. Both blocked the Fenton reaction in a dose-dependent manner. CONCLUSION: Lanthanide(III) complexes were proven to block the iron-driven production of the hydroxyl radical. Second, the lanthanide(III) element appears to be crucial for the anti-oxidant effect. Overall, lanthanum complexes may be promising direct anti-oxidants for future testing

    Photophysiological and photosynthetic complex changes during iron starvation in Synechocystis sp. PCC 6803 and Synechococcus elongatus PCC 7942

    No full text
    Iron is an essential component in many protein complexes involved in photosynthesis, but environmental iron availability is often low as oxidized forms of iron are insoluble in water. To adjust to low environmental iron levels, cyanobacteria undergo numerous changes to balance their iron budget and mitigate the physiological effects of iron depletion. We investigated changes in key protein abundances and photophysiological parameters in the model cyanobacteria Synechococcus PCC 7942 and Synechocystis PCC 6803 over a 120 hour time course of iron deprivation. The iron stress induced protein (IsiA) accumulated to high levels within 48 h of the onset of iron deprivation, reaching a molar ratio of ~42 IsiA : Photosystem I in Synechococcus PCC 7942 and ~12 IsiA : Photosystem I in Synechocystis PCC 6803. Concomitantly the iron-rich complexes Cytochrome b6f and Photosystem I declined in abundance, leading to a decrease in the Photosystem I : Photosystem II ratio. Chlorophyll fluorescence analyses showed a drop in electron transport per Photosystem II in Synechococcus, but not in Synechocystis after iron depletion. We found no evidence that the accumulated IsiA contributes to light capture by Photosystem II complexes

    Synthesis and Spectroscopic Characterization of High-Spin Mononuclear Iron(II) \u3cem\u3ep\u3c/em\u3e-Semiquinonate Complexes

    Get PDF
    Two mononuclear iron(II) p-semiquinonate (pSQ) complexes have been generated via one-electron reduction of precursor complexes containing a substituted 1,4-naphthoquinone ligand. Detailed spectroscopic and computational analysis confirmed the presence of a coordinated pSQ radical ferromagnetically coupled to the high-spin FeII center. The complexes are intended to model electronic interactions between (semi)quinone and iron cofactors in biology

    Identification of an iron–hepcidin complex

    Get PDF
    Following its identification as a liver-expressed antimicrobial peptide, the hepcidin peptide was later shown to be a key player in iron homoeostasis. It is now proposed to be the 'iron hormone' which, by interacting with the iron transporter ferroportin, prevents further iron import into the circulatory system. This conclusion was reached using the corresponding synthetic peptide, emphasizing the functional importance of the mature 25-mer peptide, but omitting the possible functionality of its maturation. From urine-purified native hepcidin, we recently demonstrated that a proportion of the purified hepcidin had formed iron-hepcidin complexes. This interaction was investigated further by computer modelling and, based on the sequence similarity of hepcidin with metallothionein, a three-dimensional model of hepcidin, containing one atom of iron, was constructed. To characterize these complexes further, the interaction with iron was analysed using different spectroscopic methods. Monoferric hepcidin was identified by MS, as were possibly other complexes containing two and three atoms of iron respectively, although these were present only in minor amounts. UV/visible absorbance and CD studies identified the iron-binding events which were facilitated at a physiological pH. EPR spectroscopy identified the ferric state of the bound metal, and indicated that the iron-hepcidin complex shares some similarities with the rubredoxin iron-sulfur complex, suggesting the presence of Fe(3+) in a tetrahedral sulfur co-ordination. The potential roles of iron binding for hepcidin are discussed, and we propose either a regulatory function in the maturation of pro-hepcidin into active hepcidin or as the necessary link in the interaction between hepcidin and ferroportin

    Hydrogenated and deuterated iron clusters: Infrared spectra and density functional calculations

    Get PDF
    Iron clusters react sequentially with hydrogen molecules to form multiply hydrogenated products. The increases in cluster ionization potential upon reaction verify that hydrogen chemisorbs dissociatively to form iron cluster–hydride complexes, FenHm. At low source temperatures, the cluster–hydride complexes take up additional hydrogen molecules which are shown to be physisorbed onto the underlying FenHm complexes to form FenHm(H2)p species. The infrared spectra of FenHm and FenDm (n = 9–20) were obtained by the photodissociation action spectroscopic method in which depletion of the FenHm(H2)p and FenDm(D2)p species was the signature of absorption. The spectra, recorded in the 885–1090 cm−1 region, consist of several overlapping bands, each approximately 20 cm−1 in width. The dissimilarity of each FenHm(H2)p spectrum with the corresponding FenDm(D2)p spectrum indicates that the carrier involves hydrogen and is not merely due to absorption by the underlying iron cluster. Density functional calculations were performed on model complexes, Fe13H14 and Fe13D14, the iron portion of which was assumed to have Th symmetry. The infrared-active vibrational frequencies involving hydrogen bending and deuterium stretching are predicted to lie within the experimental frequency range of the experiment, well removed from the skeletal modes of the underlying iron cluster. The complexity of the observed spectra as compared to simulations based on the assumed (high-symmetry) model imply that the experimentally produced complexes possess low symmetry

    Electron Capture Dissociation Mass Spectrometry of Metallo-Supramolecular Complexes

    Get PDF
    The electron capture dissociation (ECD) of metallo-supramolecular dinuclear triple-stranded helicate Fe2L3 4 ions was determined by Fourier transform ion cyclotron resonance mass spectrometry. Initial electron capture by the di-iron(II) triple helicate ions produces dinuclear double-stranded complexes analogous to those seen in solution with the monocationic metal centers CuI or AgI. The gas-phase fragmentation behavior [ECD, collision-induced dissociation (CID), and infrared multiphoton dissociation (IRMPD)] of the di-iron double-stranded complexes, (i.e., MS3 of the ECD product) was compared with the ECD, CID, and IRMPD of the CuI and AgI complexes generated from solution. The results suggest that iron-bound dimers may be of the formFeI 2L2 2 and that ECD by metallo-complexes allows access, in the gas phase,to oxidation states and coordination chemistry that cannot be accessed in solution

    Reactivity of Acyclic (pentadienyl)iron(1+) Cations with Phosphonate Stabilized Nucleophiles: Application to the Synthesis of Oxygenated Metabolites of Carvone

    Get PDF
    The addition of phosphonate stabilized carbon nucleophiles to acyclic (pentadienyl)iron(1+) cations proceeds predominantly at an internal carbon to afford (pentenediyl)iron complexes. Those complexes bearing an electron withdrawing group at the σ-bound carbon (i.e., 13/14) are stable and isolable, while complexes which do not contain an electron withdrawing group at the σ-bound carbon undergo CO insertion, reductive elimination and conjugation of the double bond to afford cyclohexenone products (21/22). Deprotonation of the phosphonate 13/14 or 21 and reaction with paraformaldehyde affords the olefinated products. This methodology was utilized to prepare oxygenated carvone metabolites (±)-25 and (±)-26
    corecore